myGenome

by **Veritas**

is the whole genome sequencing service and interpretation aimed to improve your patient's health

myGenome is the most comprehensive preventive genetic test for healthy patients

myGenome is the genome sequencing and interpretation service intended to help prevent diseases and improve the health of your patients. The test provides key genetic information to the patient and his or her physician in order to adapt the individual's lifestyle and medical care. The test is intended for healthy individuals that want to be proactive in their healthcare.

myGenome includes:

- Whole GENOME sequencing from a saliva or blood sample obtained with a Veritas kit.
- Analysis of genes related to actionable diseases with clinical utility.
- Genetic information storage for future consultations.

myGenome has been developed by experts in genetics, bioinformatics and specialized physicians from the Harvard School of Medicine with more than 10 years of experience in the study and analysis of the human genome.

Why sequence the genome?

15-20%

Between 15-20%¹ of cancer cases are due to familial aggregation that increases the risk of cancer in the family.

3%

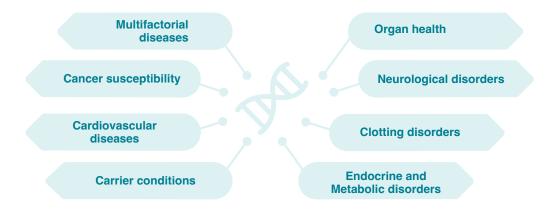
Around 3%² of the couples planning to have children have a 25% risk of having a child affected by a genetic disease.

30%

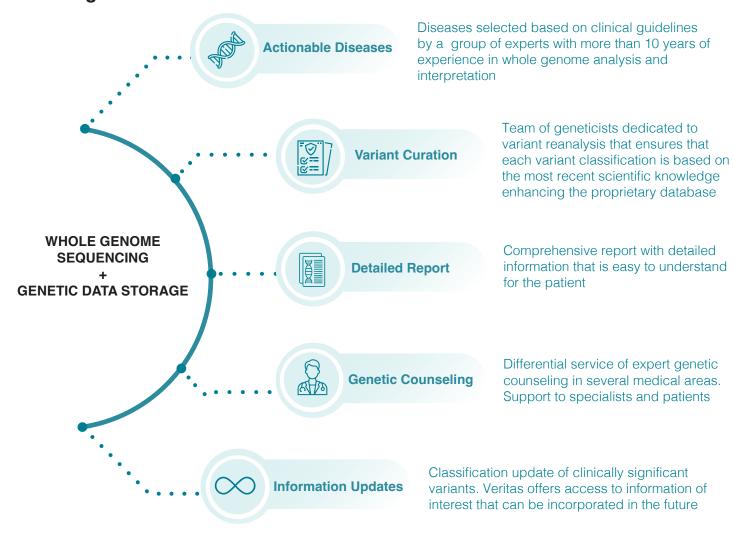
About 30%³ of sudden cardiac deaths are due to genetic variations in genes responsible for the structure of the cardiac muscle or the cardiac rhythm.

6%

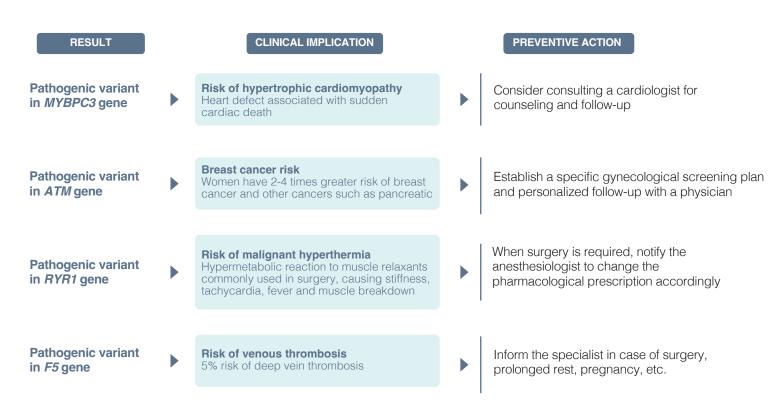
Around 6%4 of the population have an increased risk of developing hereditary thrombosis. Acquired factors such as bed rest or lack of physical activity increase the risk.

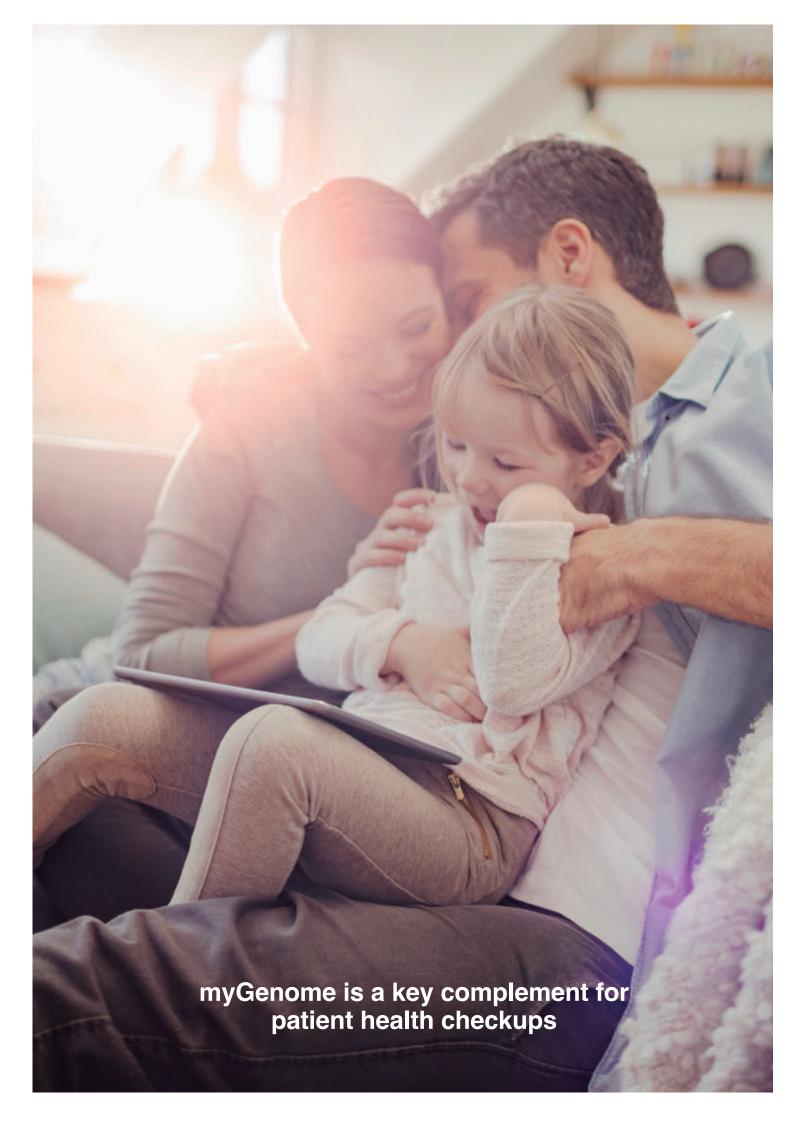


3-5%

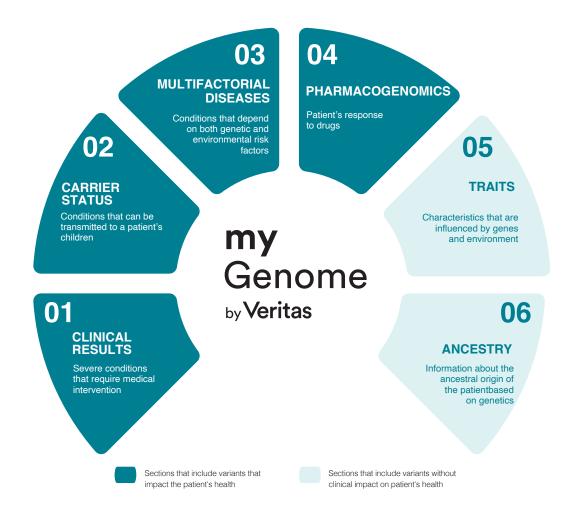

Between 3-5%⁵ of hospital admissions in Europe are due to adverse drug reactions.

What type of diseases are included?


- Diseases selected based on the American College of Medical Genetics and Genomics criteria that emphasizes the importance of analyzing cardiovascular diseases and risk of hereditary cancer, since they are the most frequent and actionable diseases.
- More than 650 diseases are reported in the following categories:



Advantages



Clinical Examples

Report Sections

1 Clinical results

Interpretation of 583 genes selected based on the American College of Medical Genetics and Genomics criteria, related to conditions that have an important impact on the patient's health. Full gene analysis is performed reporting pathogenic and likely pathogenic variants. This information is key to personalize medical management.

2 Carrier status

Analysis of over 200 diseases where the patient can be an asymptomatic carrier. If both members of the couple are carriers of the same disease, they have a higher risk of transmitting it to their children.*

Multifactorial diseases

Analysis of specific variants related to multifactorial conditions where both genetic and environmental risk factors are involved. This information allows the adaptation of patient's lifestyle based on genetics.

4 Pharmacogenomics

myGenome analyzes genes related to metabolism, secondary drug targets and transporters in order to know the effect of more than 250 pharmaceuticals on the patient, which allows a personalized prescription. The drugs analyzed are included in the following medical areas:

- Cardiovascular
- Hematology
- Infectious diseases and immune disorders
- Oncology

- Transplantation Medicine
- Pain Medicine
- Gastroenterology
- Neurology
- Ophthalmology

Veritas also includes the analysis of traits that do not have a clinical impact on the patient's health, but allow to make informed decisions based on genetics. The following traits are analyzed:

Athleticism

- Achilles Tendinopathy
- Exercise Response
- Ligament Injury
 Susceptibility
- Lumbar Disc Disease
- Susceptibility
- Muscle Strength
- Muscle Volume
- Muscular Endurance
- Muscular Power

Longevity

- Longevity

Metabolism

- Metabolic Syndrome
- Resting Metabolic Rate
- Weight Gain
- Obesity

Immune system

- IL-6 Levels

Cardiovascular

- Blood Pressure
- Baseline Cholesterol

Nutrition and Diet

- Polyunsaturated Fats
- Vitamin B12
- Vitamin B6
- Vitamin C
- Vitamin D
- Vitamin E

Hormones

- IGF-1 Levels
- Menopause Age
- Testosterone Levels

Physical appearance

- Earwax Type
- Eye Color
- Finger Length Ratio
- Freckling
- Hair Color
- Hair Curl
- Hair Thickness
- Height
- Iris Patterns
- Male Pattern Baldness
- Pigmentation

Behavior

- Hunger Response Control
- Snacking Behavior
- Sugar Intake
- Sweet Tooth

Substance reaction

- Alcohol Sensitivity
- Coffee and Caffeine
- Nicotine Response

Sensory perception

- Asparagus Metabolite Odor Detection in Urine
- Bitter Taste Perception
- Cilantro (Coriander)
 Preference
- Misophonia (Sensitivity to Chewing Sounds)
- Nearsightedness (Myopia)
- Odor Detection
- Pain Sensitivity
- Photic Sneeze Reflex
- Sweetness Detection

6 Ancestry

myGenome analyzes variants in the DNA to establish the ancestral origin of the patient based on genetics.

Genes with clinical interpretation

BCC8	ATM	CCND1	CTNS	ENG	FBN1	GPIHBP1	KCNH2
ABCC9	ATP7B	CD82	CTRC	EP300	FBN2	GREM1	KCNJ11
ABCD1	ATR	CDC73	CYBA	EPAS1	FGFR2	H19	KCNJ2
ABCG5	AURKA	CDH1	CYLD	EPCAM	FH	HABP2	KCNJ5
ABCG8	AXIN2	CDK4	CYP11B1	ERBB2	FHL1	HADHA	KCNJ8
ABRAXAS1	B3GALT6	CDKN1B	CYP11B2	ERCC1	FHL2	HAMP	KCNQ1
ACADM	B4GALT7	CDKN1C	CYP19A1	ERCC2	FKBP14	HAX1	KIF1B
ACADSB	BAG3	CDKN2A	CYP1B1	ERCC3	FKRP	HBB	KIT
ACADVL	BAP1	CEBPA	CYP21A2	ERCC4	FKTN	HCN4	KLF10
ACD	BARD1	CEBPE	CYP27A1	ERCC5	FLCN	HEXA	KLLN
ACSF3	BBS1	CEP57	DCLRE1C	ERCC6	FLNA	HEXB	KRAS
ACTA1	BBS2	CERKL	DDB2	ESR1	FLNC	HFE	LAMA2
ACTA2	BCHE	CETP	DDR2	ETFDH	FXN	HIP1	LAMA4
ACTC1	BCKDHA	CFTR	DDX41	ETV6	G6PC	HJV	LAMP2
ACTN2	BCKDHB	CHEK2	DES	EVC	G6PC3	HLCS	LDB3
ACVRL1	BLM	CHRM2	DHCR7	EXO1	G6PD	HMBS	LDLR
ADAMTS2	BMPR1A	CHRNE	DICER1	EXT1	GAA	HMMR	LDLRAP1
AGA	BRAF	CHST14	DIS3L2	EXT2	GALC	HNF1A	LIPA
AGL	BRCA1	CLN5	DKC1	EYA4	GALK1	HNF1B	LITAF
AIP	BRCA2	CLRN1	DMD	EYS	GALNT12	HNF4A	LMF1
AIRE	BRIP1	CNGB3	DNAJC19	EZH2	GALT	HOXB13	LMNA
AKAP9	BTD	COL1A1	DOCK8	F11	GATA1	HPS1	LOX
AKT1	BUB1B	COL1A2	DOLK	F5	GATA2	HRAS	LPL
ALDOB	CACNA1C	COL3A1	DPP6	F8	GATAD1	HSPB8	LRPPRC
ALK	CACNA1S	COL5A1	DPYD	F9	GBA	HYLS1	LSP1
				FAH	GBE1	IKZF1	LTBP2
ALMS1 ALPL	CACNA2D1 CACNB2	COL5A2 COL7A1	DSC2 DSE	FAM161A	GCDH	ILK	LTBP2 LZTR1
	CACNB2 CALM1			FAN1			MAP2K1
ANK2		COX15	DSG2		GCKP	INS	
ANKRD1	CALM2	CPT1A	DSP	FANCA	GCKR	ITK	MAP2K2
APC	CALM3	CPT2	DYSE	FANCE	GDF2	IVD	MAP3K1
APOA4	CALR3	CREB3L3	DYSF	FANCC	GEN1	JAG1	MAX
APOA5	CASP8	CREBBP	EFEMP2	FANCD2	GJA5	JAK2	MC1R
APOB	CASQ2	CRELD1	EGFR	FANCE	GJB2	JPH2	MCOLN1
APOC2	CASR	CRYAB	EGLN1	FANCF	GJB6	JUP	MED17
APOE	CAV3	CSRP3	EGLN2	FANCG	GLA	KCNA5	MEFV
AR	CAVIN4	CTC1	EGR2	FANCI	GLB1	KCND3	MEN1
ARID5B	CBL	CTF1	ELANE	FANCL	GLE1	KCNE1	MESP2
ARSA	CBS	CTLA4	ELN	FANCM	GNE	KCNE2	MET
ASNS	CBX8	CTNNA1	ELP1	FAS	GPC3	KCNE3	MGMT
ASPA	CCM2	CTNNB1	EMD	FAT1	GPD1L	KCNE5	MIB1

my Genome by Veritas

+650

Diseases of hereditary origin

+225

Conditions that you may pass on to your children

+15

Multifactorial conditions dependent on genetics and environment

+250

Information on drug response based on patient's genetics

+50

Information on genetic traits related to diet, athletics, longevity, nutrition, behavior, cardiovascular health, metabolism and more

Comprehensive Genetic Counseling pre and post test

Information about your ancestors

Technical Information

- Whole genome sequencing with an average depth of 30x (gold standard for genome sequencing).
- Analytic sensitivity is 99% for SNVs* and 97.6% for small insertions/deletions (6 bases).
- Analysis and variant classification based on internal and external databases (ClinVar and HGMD**).
- Variant curation performed by our dedicated expert team with proprietary software developed for detailed variant classification.
- myGenome has been developed by a medical expert team with more than 10 years of experience in Whole Genome Sequencing, including members of the Personal Genome Project from the Harvard Medical School.

References

- 1. https://seom.org/informacion-sobre-el-cancer/consejo-genetico.
- 2. Rotem BS et al. A Data-Driven Evaluation of the Size and Content of Expanded Carrier Screening Panels. Genetics in Medicine.doi:10.1038/s41436-019-0466-5
- 3. Orland KM et al. Molecular Autopsy for Sudden Cardiac Death: Current State and Considerations. Current Genetic Medicine Reports. 2019. https://doi.org/10.1007/s40142-019-00170-x
- 4. MacCallum P, et al. Diagnosis and management of heritable thrombophilias. BMJ 2014;349:g4387.
- 5. Bouvy JC et al. Epidemiology of Adverse Drug Reactions in Europe: A Review of Recent Observational Studies. Drug Saf 2015;38:437–453
- » Bagnall RD et al. A Prospective Study of Sudden Cardiac Death among Children and Young Adults. N Engl J Med 2016;374;25.
- » Mellor G et al. Genetic Testing in the Evaluation of Unexplained Cardiac Arrest. Circ Cardiovasc Genet. 2017;10:e001686.
- » Mandelker D et al. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing. Genet Med 2016;18:1282-1289.
- » Landrum MJ et al. ClinVar: public archive of interpretations of clinically relevant variants. Nuc Acids Res 2016;44(1):D862–D868. doi: 10.1093/nar/gkv1222. PMID 26582918.
- » Zook JM. et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci Data 2016;3:160025 doi: 10.1038/sdata.2016.25.
- » Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-424. PMID 25741868.
- » Stenson PD et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 2017;136:665-677.
- » Whirl-Carrillo M. et al. Pharmacogenomics Knowledge for Personalized Medicine. Clin Pharmacol Ther. 2012; 92:414-417. PMID 22992668.
- » Miller DT, et al; ACMG Secondary Findings Working Group. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2023 Aug;25(8):100866. PMID: 37347242.
- » M. Lindor et al. Whole-Genome sequencing in healthy people. Mayo Clin Proc. January 2017;92(1):159-172 http://dx.doi.org/10.1016/j.mayocp.2016.10.019.

^{*}Single Nucleotide Variant / **Human Gene Mutation Database

About Veritas

Veritas Genetics, a *LetsGetChecked* company, is one of the world leaders in advanced genetic sequencing and clinical interpretation of the exome and whole genome, driving the transition to personalized and preventive medicine.

Using state-of-the-art technologies and the highest safety standards, Veritas Genetics helps individuals, healthcare professionals and institutions worldwide to understand and anticipate genetic risks, enabling more informed and proactive health decisions.

With a focus on innovation and accessibility, Veritas Genetics transforms the way we understand and care for health at every stage of life.

info@veritasint.com | veritasint.com

